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Abstract. We describe an improved reaction rate equation for simulating  ignition and 
growth of reaction in high explosives. It has been implemented into CALE1 and ALE3D2 
as an alternate to the baseline the Lee-Tarver reactive flow model3,4. The reactive flow 
model treats the explosive in two phases (unreacted/reactants and reacted/products) with 
a reaction rate equation to determine the fraction reacted, F. The improved rate equation 
has fewer parameters, is continuous with continuous derivative, results in a unique set of 
reaction rate parameters for each explosive while providing the same functionality as the 
baseline rate equation.  The improved rate equation uses a cosine function in the ignition 
term and a sine function in the growth and completion terms. The improved rate equation 
is simpler with fewer parameters  
 

 

Introduction 
 
The reactive flow (RF) model for simulating 

shock initiation of energetic materials has been in 
use since the early 1980’s3. The model is based on 
an ignition and growth of reaction rate equation for 
modeling high explosives as they transition from 
the unreacted state to the reacted state. A JWL 
form of equation of state (EOS) is used to describe 
the response of the reacted (explosive products). 
An equation of state, typically JWL form, is also 
used to describe the response of the unreacted 
(inert) material. The reaction rate equation is used 
to determine the amount of the material that reacts 
every cycle (fraction reacted) and the transition 
from the unreacted to the reacted state.  

In this paper we describe a modified form of 
the ignition and growth of reaction rate equation 
(aka reactive flow, RF) that uses a half period of 
the cosine function in the ignition term and a half 
period of the sine function in the growth of 
reaction and completion terms. The improved rate 
equation is simpler with fewer parameters while 

maintaining the functionality of the baseline rate 
equation. It is better suited for optimization 
because the parameters are not correlated and the 
maximum value of the growth and completion 
term form factor (FF) is always 1.0.  

 
Baseline Rate Equation 

 
There are two versions of the baseline RF rate 

equation that have been published. The two-term 
form, Eq. 1, has an ignition term and a single 
growth of reaction term4.  It has been shown to be 
useful for a wide range of shock and impact 
initiation studies.  The three-term form of the rate 
equation, Eq. 2, consists of an ignition term, a 
growth of reaction term, and a completion term5. 
The three-term form has been shown to be more 
effective than the two-term form for high intensity, 
short duration shocks. However, for initiation 
problems that do not involve high pressure short 
pulse duration shocks, the two-term form of the 
rate equation can be successfully used while also 
having less parameters6. 
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The utility of the baseline forms of the rate 

equation (Eq. 1 & 2) have been demonstrated for 
many materials.  However, it is difficult to 
determine optimal parameter sets because: 
 The ignition term causes a discontinuity in df/dt 
when F exceeds the ignition limit.  
 The maximum values of the growth and 
completion term FFs vary as the Es and Ar 
parameter values are varied. 
 The Grow, Es, & Ar, variables are correlated 
making it difficult to parameterize and optimize. 
 
New Rate Equation 
 

The two-term and three-term forms of the new 
rate equation are described in Eq. 3 & 4.  The 
three-term forms of the baseline and new rate 
equations (Eq 2 & 4) default to the two-term forms 
(Eq. 1 & 3) when the Grow1 term is set equal to 
zero. The new form of the reaction rate equation 
has several advantages for optimization over the 
baseline form: 
 The ignition term is continuous and smoothly 
goes to 0.0 as F goes to the ignition limit (figmx).  
 The maximum value of the growth and 
completion FFs is always 1.0. 
 The Grow & Es variables are not correlated 
making it easy to parameterize and optimize. 
 There are fewer parameters. 
 
Comparison of Ignition Terms 
  

A graphical comparison of the ignition term 
portion of the baseline and new rate equations is 
shown in Fig. 1. The red curve shows a plot of the 
ignition portion of the baseline rate equation as a 
function of the fraction reacted.  It shows how the 
ignition term is discontinuous when the fraction 
reacted (F) reaches the ignition limit, figmx. The 
new  ignition term, shown in blue, is continuous 
and smoothly approaches a value of 0.0 as F 
approaches the ignition limit. 

 
 

 
Fig. 1. Comparison of baseline and improved rate 
equation ignition terms  
 
Comparison of Growth Terms 
 

A comparison of the FFs for the baseline and 
new rate equations is discussed in the following 
section.  This discussion applies to either the 
growth or completion terms of the rate equation.  
 
Baseline Growth/Completion Term Form Factor 
 

The FF given in Eq. 5 is used in the growth & 
completion terms of the baseline rate equation. 
Three example curves showing the value of this FF 
as a function of the fraction reacted, F, are shown 
in Fig. 2.  The curves are for three sets of values of 
Es and Ar.  The maximum value of the FF is 
different for each set of Es and Ar values. Changes 
in Es or Ar in order to affect a shift in the shape of 
the FF curve (i.e. fast rise vs. slow rise) may also a 
result in a change in the peak value of the curve. 
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Fig. 2. Three curves of the baseline FF as a 
function of the fraction reacted. 
 
New Growth Term Form Factor 

 
The new FF for the growth and completion 

terms of the rate equation is based on a half period 
of the sine function as shown in Eq. 6.  
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The new FF has one less parameter than in the 
baseline equation and always has a maximum 
value of 1.0. Three curves showing the value of 
the new FF for three values of Es are plotted as a 
function of the fraction reacted, F, in Fig. 3. The 
sine function starts at zero with F equal to zero 
(unreacted). It reaches a maximum of 1.0 when FEs 
is equal to 0.5 and goes back to zero as F goes to 
1.0 (fully reacted). The parameterization process is 
simplified because Es can be altered to shift the 
curve in F space (fast rise vs. slow rise) without 
changing the maximum value of the FF. The sine 
function normalizes the FF and we expect that the 
value of the growth and completion prefactor 
terms (Grow1 & Grow2) should be correlated to the 
shock to detonation transition characteristics of the 
explosive. Additional benefits of the new FF are 
that the derivatives are continuous. It may also be 
possible to not use the ending and starting limits 
on the growth and completion terms of the three-
term model by making Es small or large. 

Fig. 3. Three curves of the new FF as a function of 
the fraction reacted. 
 
Parameter Optimization 
 

We have made a comparison of parameter 
optimization for the baseline rate equation with 
parameter optimization for the new rate equation. 
The parameter values were determined using 
GLO5 by simulating the results of two EDC-37 
shock-to-detonation (SDT) embedded particle 
velocity gage experiments6. The simulations were 
run with ALE3D and CALE. The GLO determined 
baseline RF initiation parameters were verified by 
comparing to the results of two additional SDT 
embedded gage experiments. The first part of the 
parameterization process involved determining the 
unreacted equation of state of the EDC-37. 
 
Unreacted Equation of State 
 

We determined the unreacted EOS parameters 
by simulating SDT experiments with the reaction 
rate parameters set to zero and matching to the 
early portion of the experimental data. The 
Gruneisen EOS parameters (c0 & s1) were first 
determined. The JWL EOS parameters values (a, 
b, r1, & r2) for the unreacted material were then 
determined directly from the Gruneisen EOS 
parameter values by finding the best fit of the JWL 
pressure-volume curve to the Gruneisen pressure-
volume curve in the relative volume range of 0.75 
to 1.0.   



Baseline RF Rate Equation Parameters 
 

The optimum parameter values for the 
baseline two-tem form reaction rate equation were 
found with a combination of global & local 
optimization. Five hundred global values of Ar and 
Es were first defined using latin hypercube 
sampling9. For each value of Ar & Es, the values of 
Freq and Grow were locally optimized to find the 
best match to the experimental data as defined by a 
figure of merit (FOM). Plots of the locally 
optimized value of the FOM versus the globally 
defined values of Ar and Es are shown below in 
Figs 4 & 5. 

 

Fig. 4. Optimized FOM vs Ar with the baseline Eq. 
 

Fig. 5. Optimized FOM vs Es with the baseline Eq.  

A plot of the FOM versus the locally 
optimized values of Grow is shown in Fig 6. 
Figures 4, 5, & 6 show the difficulty of 
determining an optimum set of values for the 
parameters used in the baseline rate equation. 
There are many good values but there is not a 
“best” set of values. The plots show a slight 
improvement in the FOM with increasing values 
of Es and Grow. However, a subsequent study with 
larger values of Es continued with the same trend 
without resulting in an obvious set of optimum 
parameter values.  

We also tried normalizing the growth of 
reaction term by dividing Grow by the maximum 
value of the FF (Eq. 5) for each set of Ar and Es. 
This improved the optimization process, however, 
it still did not lead to an obvious best set of 
parameter values.  The bottom line is that the three 
parameters used in the growth of reaction term are 
primarily used to define two things; 1) the values 
of the fraction reacted, F, where the reaction rate 
term is at a maximum, and 2) the maximum value 
of the reaction rate term.  

Our conclusion is that the parameters used in 
the baseline reaction rate equation result in an 
“over specified” condition which can lead to 
multiple sets of values that give good results. This 
makes it difficult to optimize because widely 
varying parameter values can give about the same 
result.  
 
 

Fig.6. Optimized FOM vs Grow with baseline Eq. 



New Rate Equation Parameters 
 

The optimum parameter values for the new 
two-term form reaction rate equation were found 
in the same way as with the baseline. We used a 
combination of global & local optimization. Five 
hundred global values of Es (Ar is not required) 
were first defined using latin hypercube sampling. 
For each value of Es, the ignition term, Freq, and 
the growth of reaction tem, Grow were locally 
optimized to find the best match to the 
experimental data. A plot of the locally optimized 
value of the FOM versus the globally defined 
values of Es is shown below in Fig. 7.  

This plot has a nice parabolic shape with a 
minimum at about Es = 0.81. It also shows the 
utility of using the sine function in the FF, as there 
is a fairly obvious optimum value for Es. 

A plot of the FOM as a function of the locally 
optimized value of the growth of reaction 
parameter (Grow) is shown in Fig. 8. This plot 
also has a nice parabolic shape with a minimum at 
about Grow = 85. A similar result was obtained for 
the value of Freq. 

The global and local optimization studies 
show that the parameters in the new form of the 
reaction rate equation are not correlated and have 
uniquely optimum values. In addition, the new rate 
equation has fewer parameters and a lower FOM, 
0.85 versus 0.92, showing a better match to 
experiment than the baseline rate equation 
 

Fig. 7.  Optimized FOM vs Es with the new Eq. 

 
Fig. 8.  Optimized FOM vs Grow with the new Eq. 
 

We observe that the best set of parameter 
values for the baseline equation (Ar=0.73, Es=0.95, 
and Grow=236) result in a maximum in the FF at 
F=0.435. Similarly, for a value of 0777 for Es  in  
the  new  rate  equation results  in  a maximum  in 
the FF at F=0.412.  Looking at the growth of 
reaction term we see a very comparable result. The 
maximum value of the baseline equation FF (Eq. 
5, at Ar=0.73, and Es=0.95) is 0.3166. Multiplying 
this by the optimal baseline Grow value, 236, 
yields a normalized value of 74.7 which is quite 
close to the optimal Grow value of 83.6 that was 
obtained for the new rate equation.   
 
Parameters Values for EDC37  
 

The optimized parameter values for EDC37 
using the baseline and new rate equations are 
compared in Table 1. Note that some values have 
up to 7 significant digits – this is used to specify 
specific sets of parameters. The following key 
points can be observed from the comparison: 
 The frer term is not used in the new rate Eq. 
 The ilim term is 0.2 in the new rate Eq. 
 The EDC37 parameter set uses the two term 
form of the rate equation (grow1 terms not used). 
 The Ar2 term is not used in the new rate Eq. 
 The value of F at FF max for the baseline and 
new Eqs are 0.435 and 0.412 respectively. 
 The normalized Grow (74.7) for the baseline Eq. 
is about the same as Grow (83.6) with the new Eq. 



 
Parameters Values for CompB  
 

The parameter values for CompB from 
Reference 6 are listed in Table 1 under the “Old 
Baseline CompB” column. These values were not 
“optimized” with GLO at the time of 
parameterization. The optimized values for the 
new rate equation are listed in the table under the 
“New Eq. CompB” column.  

A conversion of parameters back to the 
baseline model from the optimized “New Eq.” 
parameter set is listed in the “new Baseline 
CompB” column. The following steps were 
followed in the conversion: 
 Set Es2=0.88. 
 Set Ar2=0.734 so that FFmax occurs at F=0.455 
 Determine optimal Grow=681. 
 
Conclusions 
 

Fitting the coefficients of the unreacted JWL 
by matching to a calibrated Gruneisen EOS is a 
simple and accurate approach.  The combination of 
global and local optimization provides an effective 
way to determine optimized reaction rate 
coefficients from multiple experiments. The new 
reaction rate equation has several advantages over 
the baseline reaction rate equation: 
 
 The ignition term is continuous and the 
derivatives are continuous. 
 The maximum value of the growth and 
completion FF terms are always 1.0. 
 The Grow & Es parameters are not correlated 
making it easy to parameterize and optimize. 
  The new rate equation has fewer parameters, 
and provides the same functionality as the baseline 
reaction rate equation. 
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Table 1. Parameter values for the optimized baseline two-term RF model and for the improved two-term 
RF model for EDC37 and CompB 

Parameter 
name 

Baseline  
EDC37 

New Eq. 
EDC37

Old Baseline 
CompB

New Eq. 
CompB 

New Baseline 
CompB 

refdp 1.842 1.842 1.630 1.630 1.630 
ap 6.4051948 6.4051948 5.57483 5.57483 5.57483 
bp 0.2510169 0.2510169 0.078301 0.078301 0.078301 
rp1 4.25 4.25 4.50 4.50 4.50 
rp2 1.825 1.825 1.20 1.20 1.20 
wp 0.25 0.25 0.34 0.34 0.34 

cmp 1.0e-05 1.0e-05 1.0e-05 1.0e-05 1.0e-05 
q 0.134712 0.1347127 0.081 0.081 0.081 

refdr 1.842 1.842 1.630 1.630 1.630 
ar 12487 12487 1479 405.6 405.6 
br -1.7359e-4 -1.7359e-4 -5.261e-2 -2.991814e-3 -2.991814e-3 
rr1 14.99 14.99 12.0 10.63 10.63 
rr2 -4.07944 -4.07944 1.20 -1.71146 -1.71146 
wr 0.8578 0.8578 0.9120 0.9120 0.9120 

cmr 2.505e-5 2.505e-5 2.4868e-5 2.4868e-5 2.4868e-5 
freq 2.524518e+1 3.738198e+1 44.0 44.0 44.0 
frer 0.222 ---- 0.222 --- 0.222 
ccrit 0.0 0.0 0.01 0.01 0.01 
eeta1 4.0 4.0 4.0 4.0 4.0 
ilim 0.3 0.2 0.3 0.3 0.3 

grow1 ---- ---- ---- ---- ---- 
es1 ---- ---- ---- ---- ---- 
ar1 ---- ---- ---- ---- ---- 
em ---- ---- ---- ---- ---- 

glim ---- ---- ---- ---- ---- 
grow2 236 8.361347e+1 514.0 353.09 680 

es2 0.95 0.7774716 0.222 0.88 0.88 
ar2 0.73 ---- 0.667 ---- 0.734 
en 2.0 2.0 2.0 2.0 2.0 

clim 0.0 0.0 0.0 0.0 0.0 
eps 0.001 0.001 0.001 0.001 0.001 
t0 298.0 298.0 298.0 298.0 298.0 

fcut 1.0e-10 1.0e-10 1.0e-10 1.0e-10 1.0e-10 
brnli 0.03 0.03 0.03 0.03 0.03 
beta 0.0 0.0 0.0 0.0 0.0 

F @ FF max 0.435 0.412 0.750 0.455 0.455 
FF @ FF max 0.3166 1.0 0.6067 1.0 0.333 

G * FF @ FF max 74.7 83.6 311.8 353.09 226.4 

 


